Nilai lim_(x→0)⁡ (1-cos ⁡4x)/(x sin⁡ x)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x\to 0} \ \frac{1-\cos 4x}{x \sin x} = \cdots \)

  1. 1
  2. 2
  3. 4
  4. 8
  5. 16

Pembahasan:

\begin{aligned} \lim_{x\to 0} \ \frac{1-\cos 4x}{x \sin x} &= \lim_{x\to 0} \ \frac{1-\cos (2 \cdot 2x)}{x \sin x} \\[8pt] &= \lim_{x\to 0} \ \frac{2 \sin^2 2x}{x \sin x} \\[8pt] &= 2 \cdot \lim_{x\to 0} \ \frac{\sin 2x}{x} \cdot \lim_{x\to 0} \ \frac{\sin 2x}{\sin x} \\[8pt] &= 2 \cdot 2 \cdot 2 \\[8pt] &= 8 \end{aligned}

Jawaban D.